

Massachusetts Water Resources Authority

After the Boston Harbor Project: How Clean is the Harbor? How Clean is the Bay?

Andrea Rex MWRA

NESSA May 8, 2003

Three Stages of Boston Harbor Cleanup

- •1985-July 1988
- Better disinfection
- Sludge discharges end

- •July 1988-September 2000
- SecondaryTreatment begins
- NITP closed, ending discharges to southern harbor

- September 2000present
- Discharge to
 Mass Bay; end of
 treatment plant
 discharges to
 harbor

EFFLUENT QUALITY MONITORING RESULTS

MWRA primary and secondary treated flows 1990-2002

Solids discharged from MWRA sources decreased by 80%

Metals discharges dropped due to the industrial pretreatment program and secondary treatment

Days with high coliform in wastewater dropped early in the BHP

BOSTON HARBOR MONITORING RESULTS

1939 report shows large areas of coliform counts exceeding 3,000 col/100 ml near the Deer Island and Moon Island discharge sites

Average *Enterococcus* in Boston Harbor changed dramatically between 1987-1998 and 1998-2000

- •Bacteria counts dropped near harbor outfall sites when discharges ended
- •First at Nut Island, then Deer Island

Nutrient levels near Nut Is. then Deer Is. decreased when the discharges stopped, now show natural seasonal cycle

Bottom water dissolved oxygen, even at its lowest in summer, is at healthy levels

- •Slight increases in harbor bottom DO have been noted since the discharge was transferred to Massachusetts Bay
- •Gradient from near-shore to offshore, water is more oxygenated at the mouth of the harbor

Sediment oxygenation has significantly increased, especially in the central and northern harbor

USGS long-term sediment contaminant study

USGS finds decreases in lead and other metals

Animals in the sediments: Increases in both abundance and diversity

Average contaminants in mussels deployed at Harbor outfall site: 1991-2001

- •Mussels were caged at the outfall site for 60 days, then analyzed for suite of toxic contaminants
- Contaminants are well below FDA limits

	Parts per billion, wet weight		
	Actual range of annual averages	FDA limit	
PCBs	14.9 - 36.6	2,000	
DDT	2.2 - 8.3	5,000	
PAH-low molecular weight (ng/g dry)	38 - 528	None	

Is the Harbor improving at the expense of Massachusetts Bay?

MONITORING THE NEW OUTFALL IN MASS. BAY

Changes in MWRA nitrogen discharges

Nutrient effects questions in bay

- Eutrophication-excess algal growth?
- Effect on dissolved oxygen?
- Harmful algal blooms?
 - Alexandrium (PSP)
 - Pseudonitzschia (ASP)
 - Phaeocystis
- Ecosystem
 - phytoplankton species composition
 - changes in timing, extent of blooms

Outfall monitoring: water column

- Water quality measured in six regions:
 - Harbor
 - Coastal
 - Nearfield
 - Offshore
 - Cape Cod Bay
 - Boundary

Water column monitoring: many parameters

- nutrients
- chlorophyll
- dissolved oxygen
- temperature, salinity
- light, water clarity
- solids
- phytoplankton
- nuisance and noxious algae
- zooplankton
- photosynthesis, respiration
- remote sensing, moored instruments
- marine mammal observations
- bacterial indicators, viruses
- diffuser mixing

Water sampling "rosette"

Outfall monitoring 2001 water quality chlorophyll

 Chlorophyll, a measure of phytoplankton biomass, showed no response to nutrient enrichment of the outfall, even in the nearfield.

Outfall monitoring 2001 dissolved oxygen

 Dissolved oxygen remained in the range of the baseline, and very close to the baseline mean

Autumn *Pseudonitzschia* abundances near outfall 1992-2002

Alexandrium abundances near outfall 1992-2002

Massachusetts Bay model compared to data

Ammonium measurements

Outfall certification: Dye dilution study

- Purpose: to measure dilution at the edge of the hydraulic mixing zone
- Result: outfall dilution was consistent with model predictions of approximately 1:70
- Regulators approved certification October 2002

Hydrodynamic modeling of effluent plume dilution: Winter Hydrographic section, Boston Harbor outfall to Cape Cod Bay

- Higher concentrations with old outfall, mainly in Boston Harbor
- Farfield dilution virtually the same when outfall is online
- Effluent will extend to surface in dilute concentrations from new outfall during winter, due to absence of stratification

Hydrodynamic modeling of effluent plume dilution: Summer Hydrographic section, Boston Harbor outfall to Cape Cod Bay

- Effluent from Harbor location trapped in surface layer in summer
- Effluent from new outfall trapped below thermocline in summer
- Difference likely to reduce impact of nutrient loading from outfall on ecosystem

Satellite data show trends in broad spatial scale, like chlorophyll levels in GoM and south of Cape Cod

J. Yoder (URI), J.O'Reilly (NOAA)]

Total chlorine residual dropped when dechlorination went into operation

Outfall dilution is 70-fold; MWRA's effluent fecal coliform limit is 14,000 col/100 ml

Monthly bacteria monitoring around outfall

	Geometric mean bacteria counts (colonies/100 ml) at new outfall site		
	Fecal coliform	Enterococcus	
Before outfall start-up	2.0	1.0	
After outfall start-up	2.2	1.1	

- Bacteria are sampled monthly, at surface and subpycnocline
- •Slight increase observed immediately above new outfall

Monthly outfall site bacteria monitoring posted at mwra.com/harbor/html/whatsnew.htm

Massachusett	s Bay	bacteria	counts

Date	Station	Fecal coliform	Enterococcus
February 20, 2003	F25S	2	1
	F145	<2	<1
	N095	<2	2
	F135	<2	<1
	F105	<2	<1
	F17S	<2	<1
100	E225	-2	-1

Massachusetts Bay bacteria counts

Note: The March survey was rescheduled to early April because of weather delays.

Date	Station	Fecal coliform	Enterococcus
April 2, 2003	F25S	<2	<1
	NO9S	<2	<1
	F14S	<2	<1
	F135	<2	<1
	F105	<2	<1
	F175	<2	<1
	F22P	<2	<1
	F225	<2	<1
	N16P	<2	<1
	N165	<2	<1
	N20P	<2	<1
	N205	<2	<1
	NO2P	<2	<1
	NO2S	<2	<1
	F18P	<2	<1
	F185	<2	<1
	F24S	<2	<1

F25S	2	1
F145	<2	<1
N095	<2	2
F13S	<2	<1
F105	<2	<1
F17S	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 <1 <1 <1 <1
F225	<2	<1
N16S	<2	<1
N205	<2	<1
N025	<2	<1
F18S	<2	<1
F105 F175 F225 N165 N205 N025 F185 F245	<2	<1 <1 <1 <1

Outfall monitoring: Mussels

- Mussels placed in cages are suspended near the diffuser
- Chlordane and PAHs in caged mussels exceeded baseline values
- Absolute values were well below FDA limits
- Effluent concentrations of these constituents were below or near ambient criteria

Outfall monitoring 2001 USGS sediment trap studies

- No changes in chromium, zinc, copper
- Slight increase in silver
- Doubling of Clostridium perfringens spores to levels seen when outfall was in harbor before secondary treatment

Pictures of sediments near the outfall show healthy, normal communities

Outfall monitoring 2001: Summary

- Elevated ammonium levels around the outfall as expected
- Chlorophyll, plankton, dissolved oxygen levels normal
- Caged mussel study indicates effluent effect on PAH and chlordane, but levels are low
- No acute impacts on sediment contamination or bottomdwelling communities
- Monitoring questions shift from acute to chronic effects

Inactive diffuser head #2 shows healthy hard-bottom animal community